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Goal: To provide a the audience with a component level view of 

two example of MEMS devices used in smart systems. 
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Micralyne Introduction 



Smart Optical Communication Systems 

• Stable fiber optic communication requires management of multiple wavelengths 

of light to fully utilize fiber capacity.  

• Attenuation during transmission and amplification to not occur uniformly over all 

wavelengths. 

• Other functions such a remote power control and wavelength switching are also 

needed within the network. 
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Wavelength Division Multiplexing (WDM) 

Erbium Doped Fiber Amplifier Gain 



Variable Optical Attenuator (VOA) 
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Input Fiber 
Tilting MEMS Mirror 

Output Fiber 

Low Attenuation High Attenuation 

• Network component that can be used for 

wavelength management (one VOA per 

channel),  on/off switching, or whole signal 

attenuation. 

 

• MEMS mirror can operate in the range from 0 to 

20 volts depending on the MEMS and system 

design. Typically 0 to 20V and 0 to 5V versions. 

0.8 dB  
Insertion Loss 

~45 dB  
Full attenuation 

Input Fiber 

Output Fiber 



VOA MEMS Example 

VOA MEMS Mirror  Voltage vs. Tilt Characteristics 
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Vertical Comb Drive Actuator 

• Uses electro-static force to tilt mirror on a silicon torsional hinge 

 

• Vertical comb drives: 

» are more efficient than parallel plate actuators 

» provide better actuation characteristics than simple parallel plate 

actuators 

Comb Drive Ends 
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Key Process Technologies 

• Deep Reactive Ion Etching for high aspect ratio bulk machining of silicon 

» Multi-height structure defined in single layer of silicon 

» Top surface remains bondable 
 

• Aligned wafer Si-Si fusion bonding 
 

• Stepper lithography 

» Non-contact for low defect count.  Alignment of out-of-plane layers to within 0.4 µm 
 

• Low stress metallization (TiW/Au) 

» Enables metalized membranes with low stress 

Mirror with better than 1.5 m ROC Acoustic image of bonded wafer 
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MicraGEM-Si™ MEMS Process Flow 

• VOAs can be made with the following process 

 

• MicraGEM-Si™ is a silicon-on-insulator based MEMS process 
for devices such as micro mirrors, optical switches, 
resonators, inertial and bio sensors 

 

 

 

• The technology includes: 

 
» Two thick SOI structure layers with bulk micromachining 

 

» Deep etch features on the upper and lower devices layers are 
aligned with sufficient accuracy to enable vertical comb drive 
structures 

 

» Upper and lower devices layers are connected electrically through 
the bond interface allowing 3D routing of electrical signals 

 

» Low stress gold metallization on the top surface is suited for highly 
reflective mirrors as well as contact pads for gold wire bonding 
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Z – Top Wafer Frontside 
 

Y – Top Wafer Backside 
 

B – Base Wafer Device Layer 

 

 
 

 

 

 

 

 

A – Base Wafer Backside 

Process Overview - Generalized Cross-Section 

Light Blue – Oxide 

Grey – Silicon 

Yellow – Lowstress metal 

Major Process Steps 

Step 1 – Define and etch silicon structure in the Base Wafer device layer (B) 

Step 2 – Define and etch Top Wafer backside (Y) 

Step 3 – Bond Base Wafer to Top Wafer 

Step 4 – Remove Top SOI handle and buried oxide 

Step 5 – Deposit low stress metal on Top Wafer fronside (Z), pattern metal 

Step 6 – Pattern and etch Top Wafer device layer to release structures 

Step 7 – Dicing 

Base Wafer Handle 

500 um thickness 

1-100 ohm-cm resistivity 

Base Wafer Device Layer, 50 µm 

0.01-0.02 ohm-cm 

Top Wafer Device Layer, 30 µm 

0.01-0.02 ohm-cm 
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Step 1 – Pattern and Etch Base Wafer 

• Define Trench 1, Trench 2 and Trench 3 

regions 

 

» Trench 1 – regions etched 50 µm, 

all the way to the buried oxide 

 

» Trench 2 – regions etched 35 +/- 2 

µm, leaving a 15 µm silicon feature 

on the buried oxide  

 

» Trench 3 – regions etched 10 +/- 1 

µm , leaving a 40 µm silicon feature 

on the buried oxide 

 

Trench 1 
Trench 2 

Trench 3 

Bond surface 

11 



Multi-layer Etched Base Wafer 

 

Confidential 
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Bond surface 



Step 2 – Define and Etch Top SOI Wafer Backside 

• Define Top SOI Wafer Backside etch 

 

» Etch depth is 20 +/- 1 µm 

 

» Min feature is 1.5 µm line, 1.5 µm 

space 

 

» In the final structure, the regions 

etched here will be left as a 10 µm 

membrane 

 
Y 

Bond surface 
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Step 3 – Bond Base Wafer to Top Wafer 

• Bottom and Top Wafers are aligned and 

fusion bonded in a controlled 

environment (under vacuum) 

 

» Post bond alignment accuracy is +/-

10 µm  

 

» The bond is mechanical, but also 

provides electrical connection 

between the two layers of silicon 

Bond interface 

Bond accuracy is +/- 10 µm  
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Step 4 – Remove Top SOI Handle and Buried Oxide 

• The Top Wafer SOI handle is removed 

with a grind and polish process 

 

• The exposed buried oxide is stripped 

leaving a pristine optically flat silicon 

surface 
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Step 5 – Deposit and Define Metal 

• The top device layer is blanket coated 

with a low stress TiW/Au metallization.  

The residual metal stress is 40-140 MPa. 

 

• The metal is then patterned to form 

device elements such as electrodes, 

bond pads and highly reflective surfaces.  

This is also the recommended layer to 

put labels. 
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Step 6 – Release Patterning and Etching 

• The final DRIE process etches completely 

through the 30 µm thick Top device layer and 

releases the MEMS structures 

 

• During this process, features in the lower layers 

will be exposed to over-etching when the etch 

breaks through and before all features are 

etched to completion. In general, very wide 

features will open first, while high aspect ratio 

features will open last. 

 

• The accuracy of this pattern is with 0.4 µm of 

the base device layer pattern 

 

• Step 7: Dicing 

 

 

17 



18 

MEMS Sensors for Smart Automobile Systems 

• A variety of technologies are available for sensing the surroundings of vehicles to 

allow autonomous driving (adaptive cruise control, park assist) and increased safety 

(lane change warnings, crash avoidance). 
 

• Safety regulation has accelerated the progress of these systems. 

» CMUT devices made using MEMS technology and will offer multi-frequency arrays as well 

as superior acoustic coupling. 

Source: US Government http://www.nhtsa.gov 
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Sensors for Medical Imaging 

• Presently 2D images are made by clinical operators moving a  

 hand held wand containing one linear array of piezoelectric  

 ultrasonic transducers over the surface of the patient and one  

 frequency is used. 

 

• Capacitive Micro-machined Ultrasonic Transducers (CMUT) offer the ability to use 

multiple frequencies and a 2D array of elements to image higher resolution and in 

three dimensions. 

» This gives the ability to move from crude images to real time topographical images. 
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Capacitive Micro-machined Ultrasound Transducers  

CMUT technology offers many potential 

advantages over traditional linear array 

piezoelectric transducer technology, including: 

• Advantages of wafer fabrication scale 

• 2D arrays offer higher resolution  

• Greater sensitivity 

• Superior acoustic impedance matching 

• Potential to co-integrate with electronics 

• Choice of frequencies of interest possible 

with just a change in geometry 

 

Bonded double SOI process cross section - three devices 
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CMUT Systems 

• CMUT technology provides MHz sound wave generation and 

detection 

• Predictive modeling algorithms to design for specific frequencies 

• CMUT devices allow for a simpler interface with drive electronics 

compared to piezoelectric transducers 

• Electronic and acoustic testing have verified model results 

Model outputs and test systems used with Micralyne’s academic development partner. 
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Summary 

• Two important Smart Systems MEMS devices were presented. 

 

• Both can be fabricated with different versions of a multi-layer silicon 

process flow. 

 

• MEMS components are a key element in the design of smart 

systems, because they sense and interact with the world around us.  
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Thank you 

 

 

Questions? 
 

Collin Twanow 

Vice President of Engineering 
Acting VP Sales & Marketing  

collin@micralyne.com 

1-780-431-4409 

 
 
 

 

 

 

 


